How to reduce downtime and risk during your Oracle 11i Upgrade

David Joffe

Introduction

Companies upgrading from a 10.7 or 11.0 release of Oracle applications to an 11i (11.5.x) version face a variety of significant challenges. IT staff and functional process owners must learn about new features and technology and decide how to utilize them. They must design new business processes, port customizations to conform to changes in the 11i data model, plan and execute internal test cycles, and conduct user training sessions. Organizations hope that the result of these efforts is that the company can run in a more efficient and cost-effective manner. Though some problems are inevitable in a project of this magnitude, implementation teams hope that any frustrations experienced by internal operations, customers, and suppliers after the upgrade goes live are minimal.

After beginning 11i upgrade projects, many companies quickly realize that in addition to making sure that the end state system works, transitioning from the old release to the new 11i release is a significant effort in itself. Many companies have found that the conversion process can take days or even weeks when it is time to go live. A prolonged period of downtime while the upgrade is in progress causes negative business impacts and creates a poor first impression for users who already will be challenged to adopt a new system.

This white paper lists proven, specific tips for reducing the amount of downtime that you will need to incur while upgrading your Oracle instance to 11i, and for eliminating risks that something will go wrong during the go live transition.

Assumptions

There are two major ways that companies have transitioned from pre-11i releases of Oracle to 11i. Reimplementation involves starting out with a clean 11i instance, patching it to the level that you want, creating all setup data that you need in it, migrating all customizations to that instance, and then developing and deploying custom scripts to migrate transactional data from your old applications instance to the new one when it is time to go live. The Upgrade method refers to following Oracle-provided processes and running Oracle-provided scripts to convert your instance from your current release to the newer release.

Although some of the techniques described in this document would be useful even for those who are using the Reimplementation approach, the primary focus of this document is on the Upgrade approach.
This white paper assumes that the reader has some familiarity with basic Oracle Upgrade concepts. If not, you might find it useful to skim Oracle’s Upgrading Oracle Applications Release 11i manual before proceeding.

Categories of Downtime Reducing Techniques

The tips for reducing downtime are divided in this document into the following categories:

· Organization, Planning, and Project Management

· Executing AutoUpgrade, the 11i Maintenance Pack, and other Patches

· DBA and Infrastructure considerations

· Module Specific Techniques

· Deploying customizations and custom setups

· Certifying the upgraded environment

· Customizing Oracle’s Upgrade and Patch scripts

A. Organization, Planning, and Project Management

Tip: Define an acceptable amount of downtime

At the start of your project, you will not have enough information to accurately estimate how much downtime you will incur. You cannot rely solely on other companies’ experiences because there are many variables unique to each Oracle implementation. Significant factors affecting how much downtime you will have include: the amount of data in your current system, which modules you use, the quality of your hardware, the extent of your customizations, and the amount of personnel you have available to reduce the downtime. Nevertheless, it is extremely useful to think about how much downtime you can tolerate as early as possible in your project lifecycle.

The amount of effort you need to spend on reducing downtime will be very different if you can only tolerate being down for a weekend as opposed to an entire week. Your fundamental approach to tackling the conversion might also change.

The amount of tolerable downtime can influence your project’s go live date as well. For example, if you absolutely cannot be down for an entire workday, but you do not think that you can reduce the downtime below 72 hours with the resources you have available, then you might choose to go live on a holiday weekend where the impact of a third day of downtime might not be as severe to your operations.

Tip: Start Upgrade work as early as possible

It is advisable to start your first upgrade practice run as soon as you have committed to doing the project. Although it will not encompass every detail from your ultimate go live plan, completing this first upgrade run will be a valuable educational experience for your project team and give you a much better idea of how much downtime you might incur and what it will take to streamline the process.

Completing this first upgrade run also has the added benefit of producing an environment that will be very useful to your entire project team. Having an 11i environment that was produced via upgrade of your own production system will be much more valuable for other analysis, design, development, and testing than using an empty Oracle 11i instance or the fabricated “Vision” environment that Oracle provides.

Tip: Establish ownership of managing the transition

Many of your project team members will be involved in reducing downtime and ensuring a smooth transition in some way. The process requires system administrators, DBAs, and functional and technical applications experts. It is useful to designate one person as the downtime coordinator or transition manager for your project. As downtime can be reduced by different team members via different technical, functional, or organizational approaches, it is important to have a clearly defined single point of contact for tracking progress and facilitating key cross-team decisions.
Tip: Define high level cutover phases

Oracle’s Upgrade manuals describe several hundred tasks that need to be executed in order to upgrade your system. It divides these tasks into six stages that it labels Category 1 thru Category 6 (more information about these tasks in a later section). For most companies, these are not the only steps you will need to perform in order to complete your transition.

As such, it is useful to define meaningful global phases that describe the tasks that need to be done in easily understandable terms for communication and optimization purposes. One such categorization is listed in the chart below.

	Phase
	Phase Description

	Advance
	Tasks that can be done “out of the critical path” without any downtime of the old or the new system. These tasks might be done days, weeks, or months before the actual system downtime.

	Rampdown
	Tasks that are done during the last 24-48 hours that the old system is still up. This would include some of Oracle’s Category 2 and 3 steps such as final runs of certain programs and clearing of open interface tables. You might also choose to cease using certain modules / functionality during this phase even though downtime has not started. No system modifications that stop the environment from functioning on its current release should be done at this point.

	PreUpgrade
	Downtime officially starts here. End users are restricted from accessing the system and additional Oracle Category steps are performed.

	AutoUpgrade
	Execute Oracle’s AutoUpgrade process which takes you from the current release to the base 11i release (11.5.1)

	11i Maintenance Pack
	Execute Oracle’s latest maintenance pack (e.g. 11.5.10) to upgrade your system to the latest 11i point release.

	Database Upgrade
	Perform database upgrade. As many 10.7 / 11.0 users are still on a pre-9i release of the database, and 11.5.9+ is only certified on 9i, many applications upgrade plans also involve doing a database upgrade. Depending on your current environment, the database upgrade might precede the applications upgrade

	Additional Patches
	Execute consolidated upgrade patches, family packs, and one off patches that you might require on top of the base maintenance pack.

	Customization deployment
	Deploy any customizations to the database (if required); Perform any manual setups that are needed

	Audit
	Business users audit the system to make sure that the data in the upgraded environment is as expected. This might involve the execution of standard Oracle or custom reports in “before” and “after” environments to make sure that the data ties out.

	Acceptance Test
	It is wise to perform a few critical transactions in the upgraded system before opening up the system to the entire user community, especially if you have a significant number of customizations. If the Audit and the Acceptance test have passed, then you are ready to “go live” (open up your system to the end user community)

	Ramp Up
	After you are a go, you might choose to start certain programs / enable access to different sets of users in a phased approach

Tip: Create and maintain a detailed cutover task list

Even in the earliest trial runs of your upgrade, it is extremely useful to record a detailed list of each and every step that you perform to create your 11i environment. Decide how you want to maintain your detailed go live plan. DBAs and technical and functional applications owners will ultimately have to perform dozens of steps in a specific sequence in order to complete your upgrade successfully. It is helpful to have a single place where every single step that needs to be performed is recorded.

The “Upgrade Assistant Spreadsheet” provided by Oracle is a good starting point for your detailed go live plan. It will contain all of the steps from the core Oracle Upgrade manual. But it needs to be augmented with many steps based on each company’s unique requirements.

You might use a spreadsheet or Microsoft Project for tracking your go live tasks. Or you can make or use a simple database application for maintaining them. In any case, your go live plan should be easily accessible. People will realize that additional go live steps or step details are needed both during practice transition executions and during functional test cycles. It is imperative that people record such steps as soon as they are noticed so that steps are not missed in the most critical go live run.

Whatever method you use for maintaining your detailed go live plan, you should consider recording for each task, its:

· Go Live Phase

· Step #

· Detailed step instructions

· Dependent steps

· Step executor

· Expected step duration (from previous run)

· Expected start and end time

· Actual duration

· Actual start and end time

· “WHO” columns (created by, creation date, last updated by, last update date)

Tip: Regularly measure and report on the progress of downtime reduction

Establish regular meetings to review the project team’s progress in achieving downtime goals. Review key issues that are outstanding and review key post mortems from previous practice runs. Look into how long each high level go live phase is taking and decide which one(s) have the most opportunity for improvement.

Tip: Practice the transition as many times as necessary

You should of course expect that each practice run of transitioning your system from 10.7/11.0 to 11i is faster than the previous one. In addition to tuning long running steps, people executing the tasks should become more familiar with what they have to do, so you should have less wasted time and fewer errors. As much as possible, try to make sure that the people who execute tasks in your practice runs are the same ones who will execute those tasks in the go live runs.

Tip: Synchronize cutover testing and functional testing

You should align your functional test plans with your cutover or transition test plans. Suppose your organization has decided that it needs to conduct three formal test cycles or conference room pilots before going live. If that is the case, you should plan on executing three corresponding transition tests to produce the upgraded environments that you will use for those three test cycles. It is important and instructive to do this. When you succeed, you will prove to yourself that you can build a working environment when you go live. If you repeat your functional test cycles using the same environment as a base each time, you have not necessarily proven that your go live will be successful. Doing the final transition test and functional test consecutively in the same fashion that you will use when going live will also help you to better understand the resources needed to make your go live a success.

Tip: Utilize experienced personnel

Upgrade projects are most certainly a time to utilize your personnel who are most experienced with Oracle Applications, the internal business operations of your organization, and with executing complex systems projects. In particular, you will want to utilize the best applications DBAs, performance tuners, and technical and functional module experts that you have available.

If you need help from outside consultants, insist on getting resources who have participated in 11i upgrade projects before.

Tip: Define a rigid freeze process

Your 11i upgrade project should have a well-defined freeze process. You should have clear milestones that result in increasingly strict controls being placed on the scope of your project. In addition to system stability, the impact on downtime and the smoothness of your transition should be considered when accepting changes and bug fixes late in your project cycle. It is particularly important that your final practice run of transitioning the system should be IDENTICAL with what you plan to do in the go live run. If you accept new customizations, bug fixes, or Oracle patches after that final practice run, you will be adding more uncertainty to the success of your go live run.

Tip: Apply changes before or after downtime where possible

People’s first instinct when attempting to reduce downtime is to make steps faster. In addition to that, you should constantly be on the lookout for tasks that do not need to be done during the primary downtime window. Upon careful review, you should be able to find technical and functional tasks that can be done without risk while your system is up. Specific examples of such tasks are given in later sections of this paper.

Tip: Plan for uncertainty

No matter how many times you practice and how much you plan, you will discover that it is extremely difficult to know exactly how much downtime you will have in your go live run. The oracle patching processes themselves consist of tens of thousands of individual scripts. Data in your current system is changing all of the time until go live. Even if your team is extremely thorough, some new unforeseen error might occur when you go live. As such, you should expect that the actual execution of your go live time might be off by a few hours from your best estimate. You should make sure that your team understands what needs to be done if the go live upgrade is faster or slower than what you expected.

Tip: Have a written fallback plan

After investing months of effort into an upgrade project, your team might not want to think too hard about what to do if some catastrophic error happens during your go live run. However, it is necessary to be prudent. Insist that your team has a written plan on how to “re-activate” your old version of the system in case of an emergency. Ensure that proper backups are taken so that you have integrity within your Oracle Applications system as well as between that system and any external systems that your organization also uses.

B. Executing AutoUpgrade, the 11i Maintenance Pack, and other Patches

To upgrade from 10.7 or 11.0 to 11i, Oracle instructs you to run several large conversion programs. Oracle divides this process into several chunks. “AutoUpgrade” is the piece that converts your system from 10.7 or 11.0 into the base 11i (11.5.1) release. You then use adpatch to apply the “11i Maintenance Pack” that takes you to the specific point release (11.5.9, 11.5.10, 11.5.10.2, etc) that you want to upgrade to. Then you will want and most likely need to apply a set of additional patches on top of that point release.

Note: You might wonder why Oracle makes you run several conversion programs instead of one. Organizing it this way enabled Oracle to freeze its AutoUpgrade code so that they do not have to change that when new releases of 11i come out. Basically this structure reduces the amount of permutations of conversions from source to target releases that Oracle has to support, but adds complexity for its upgrading customers.

This section discusses tips on how to improve your execution of AutoUpgrade, the 11i Maintenance Pack, and other patches. In some cases, it refers to Oracle manuals or metalink notes that give very helpful information. A consolidated list of all such notes is given at the end of the paper.

Tip: Determine relevant category steps using TUMS, Oracle manuals, and your own knowledge

The Oracle Upgrade manual describes hundreds of required, conditionally required, and optional tasks in a 268 page manual (for 11.5.10). Some of these steps are executed before the “core upgrade” and some are executed afterwards. In fact, Oracle divides the steps into six categories. You will find that you do not need to execute each and every one of these steps. Oracle provides a script called TUMS and a spreadsheet to help you determine which steps you need to do. Be sure to read metalink note 230538.1 for instructions on how to use TUMS.

You can feel confident that steps marked unnecessary by TUMS are indeed unnecessary. However, experience has shown that when you read the remaining steps, you will find still more that are actually not needed for your project. As many of the steps are module specific, you may need to engage help from individual module experts to determine whether the steps are actually needed for your upgrade.

Tip: Automate and parallelize Pre and Post Upgrade steps

Oracle’s instructions for running some of the category 1 thru 6 steps can involve a lot of manual effort and therefore take a significant amount of time. It can reduce downtime to automate the execution of these steps. Some of the steps involve defining manual setups or launching concurrent programs. You can reduce a lot of overhead by scripting those. There are many cases where you need not run these steps one at a time. If you script the steps make sure that they are launched simultaneously; even if you choose to execute steps manually make sure that you have enough people to run steps in parallel so that you are not wasting downtime due to human bottlenecks.

Tip: Play with # of workers

When you run AutoUpgrade and adpatch, Oracle will run tens of thousands of jobs. It will not execute them serially. The jobs are defined in phases so that hundreds of jobs can logically run at the same time. The AD utilities give you options to designate how many workers or processes you want running to execute these jobs. The optimal amount of workers to use depends on how much memory and CPUs that you have. Oracle used to recommend using only as many workers as CPUs, but they have recently changed their recommendation to use 2-4 times as many workers as CPUs. In our experience, we have found that using the upper end of that range has been optimal.

If your project plan allows for many practice runs, try several different settings for the amounts of workers and see which works best for your environment.

Tip: Use Staged APPL_TOP

From a technical perspective, upgrades and patches update your file system / code tree and change objects and data on your database. Many changes to your database can only be done during downtime and hence are in the critical path. When you are upgrading from 10.7 / 11.0 to 11i, your file system is changing very radically. There is no reason that your file system changes need to happen in the critical path.

To help you avoid wasting downtime due to filesystem changes, Oracle has wisely recommended the technique of using staged APPL_TOPs. Good directions on how to do this for upgrades can be found in metalink note 217370.1 and for patches in metalink note 242480.1.

This should be considered a “must do” for your upgrade project and as such you should implement this methodology for your first upgrade run.

Tip: Use distributed AD

In recent years, the Oracle Applications DBA team has introduced a new feature called distributed AD. Basically, this feature enables the use of multiple application server nodes when executing your patches. You should NOT expect your downtime to be cut in half if you double the amount of nodes however, because many of the upgrade jobs are database intensive and not application server intensive. Still, we have found examples where using multiple nodes has saved hours of otherwise wasted downtime.

Read metalink note 236469.1 for detailed information on how to use Distributed AD.
Tip: Search for and use latest FCUPs

Oracle tries to test and optimize its upgrade scripts before they are released. However, when a new point release first comes out, customers frequently find performance problems and bugs with patches and upgrades. Such issues might not have presented themselves on Oracle’s internal test databases. To correct these issues, Oracle makes special patches that alter its core patches and upgrade scripts. Oracle calls these patches F-CUPs.

You should check metalink frequently to see if any new FCUPs have been released for the upgrade that you are doing. Make it a step in your go live plan to check metalink for FCUPs. We have seen in the past that these FCUPs have enabled significant downtime savings.

Tip: Find long-running and bottleneck jobs

Again, AutoUpgrade and 11.5.x maintenance packs actually consist of tens of thousands of individual scripts. The ones that are likely to take longest are those that create indexes on large tables and even more importantly, those that manipulate data in your largest transaction tables.

You can find out which jobs took the longest in several ways. Information on the start and end time and duration of all jobs is placed in the AD_TASK_TIMING table that you can easily query. Also, Oracle places some summary timing files in APPL_TOP/admin/ that you can use. Also, Oracle has recently added some screens for viewing patch timing information in OAM (Oracle Applications Manager)

Once you have found a long running job, search Metalink for the problematic file name and see if Oracle already has patches for improving the run time of that job. Or you can log a new TAR to Oracle mentioning the long running job name and hope that Oracle is willing to address it. Or if your company is bold and willing to take any steps necessary to reduce downtime and you cannot wait for Oracle, you can tune some of the jobs yourself.

Section G of this paper lists some common ways of reducing the execution time of individual jobs via customization.

Note: Because Oracle’s upgrade and patching mechanisms run jobs phase by phase, tuning a long running job might not actually save you any downtime. For example, suppose Oracle has job 1 (45 minutes) and job 2 (55 minutes) running in the same phase A. It will not add any benefit to reduce the run time of job 1, because phase B can still not start until both jobs 1 and 2 are completed. As such, it is important to identify which are the bottleneck jobs in each phase and focus on improving those.

Tip: Merge patches

As stated above, it is very likely that after applying the maintenance pack for the point release, your company will need to apply one or more additional patches. You might know at the start of the project that there are some highly recommend bug fixes that you will need or that there are product specific family packs and minipacks that contain functionality that you want. Suppose that eventually you have 10 patches that you need to apply. Since there is manual overhead involved in applying any patch, Oracle provides its customers ways of merging multiple patches into one. Your team should most definitely plan to merge patches as you realize that they are required.

To learn how to merge patches, read about the “AD Merge Patch” process in Oracle’s “Oracle Applications Maintenance Procedures” manual.
Tip: Utilize time-saving adpatch options

When you run adpatch to apply Maintenance packs and one off patches, it has command line options that can be useful in reducing the downtime.

Such options include:

· phtofile

(defers patch history creation so that it can be out of the critical path)

· nocompiledb

(skips the step of compiling invalid objects)

· nocopyportion, nogenerateportion

(If you are using staged APPL_TOP as per previous hint, these are useful)

Tip: Monitor Job Timings

Even if you have optimized the expected run time of all jobs in your upgrade and patches, it is wise to monitor timings carefully during all of your runs. Suppose a job took 10 minutes in a previous practice run. If in the current run, the job is running for significantly more than 10 minutes, there is a good chance that something is wrong and needs to be investigated. Perhaps there is a locking issue, a library cache problem, or perhaps based on quirks of the Cost Based Optimizer, the SQL is using a worse execution plan than it used in past runs. If there is a problem like this, you will want to notice it sooner rather than later.

We have monitored for jobs taking longer than expected using the following methodology:

· Back up / export the AD_TASK_TIMING table from a previous practice run

· Import that backup table into your current environment as XXPREV_AD_TASK_TIMING

· Have a monitoring job (cron or something similar) that checks if a job is running more than 10% longer than it did in a previous run using the previous and current AD_TASK_TIMING information. If yes, send a notification.

We have found that other good monitors to use while running upgrades and patches are:

· Alerts that page you when a worker fails

· Alerts that search for oracle errors in manager and worker log files

· Locking and library cache monitors using v$ views

Tip: Maintain history of upgrade / patch errors

When you run autoupgrade and maintenance packs, it is extremely likely that the processes will run into errors. When an error happens, you need to determine the root cause of the problem, correct it, and then restart or skip the job in question as appropriate. It can be time consuming to figure out the root cause of the problem. Sometimes, you can just restart the job and it will complete. Other times when that does not work, you can search for the job name on metalink, and you will find a note with some corrective action that tells you what to do. In the worst case, you may have to read log files and read complex scripts to figure out what happened and determine what to do about it. This can be time consuming.

It is therefore wise to keep detailed information on what errors you encountered and what you did to correct them. You should track the job name, the error message from the log file, and the corrective action that you did to continue execution. You do not want to waste time frantically searching for errors during your actual go live run. We have seen cases where an error happened in an early practice run, did not occur for several subsequent runs, and then came back later. Keep a history of all errors from all previous runs in a spreadsheet or other safe and accessible place.

Tip: Anticipate and/or avoid upgrade / patch errors
Errors that occurred in past runs can possibly be avoided in subsequent runs with proactive steps. For an example, a job in autoupgrade might error due to a particular bad row of data that existed in your source system. If that was the case, you should correct the problem data on your production system itself well before you go live AND monitor for new similar bad data in the days and weeks before you go live.

You may not be able to avoid some errors through proactive measures, but in those cases you should make sure you are aware when those errors are going to occur. You do not want to waste precious minutes because no one was watching when an error happened.

C. DBA and Infrastructure considerations

Tip: Purge / archive data

The time it takes to run Oracle upgrade scripts that modify transactional data is most definitely a function of how much data you have. As such, purging data can have significant benefits in reducing the downtime of your upgrade. Be sure to run any already existing purge programs that you use prior to your go live, and consider adding new purge programs.

Note that not every table is touched by the 11i upgrade. So although purging of large tables is in general a good practice, not every purge will actually translate into reduced downtime. Study of your long running scripts from your upgrade practice runs can help you determine which table purges would help the most. In general, any Order Entry, shipping, or customer data purge will definitely help since those modules are completely changed in 11i.

Tip: Rebuild tables

Similarly, if your large tables that are touched in the upgrade are badly fragmented, rebuilding such tables can save a significant amount of downtime. Both purging and rebuilding can be done days or weeks ahead of your actual downtime so that the time it takes to execute these activities do not become part of your downtime critical path.

Tip: Gather statistics in advance

Oracle’s upgrade manual advises you to gather database statistics for the cost based optimizer during your downtime. This can take a significant amount of time if your database is large. We have found that it is perfectly acceptable to do this a week before go live. Your data distribution should not change drastically in the days before your upgrade goes live, so it is unlikely that any harm would come from this approach.

Tip: Use production or production-like hardware

It is ideal if you can run your practice upgrades on the very same hardware that you will use when you go live. This has numerous benefits. First of all, it will enable you to project more accurate timings of how long things will take during go live. If you use less powerful or different hardware during your practice run, you will have significant uncertainty as to what will happen when you go live. Also, if you use your production hardware for the first time during go live, you might discover that you missed some step when setting up that hardware that costs you a lot of wasted downtime.

If you cannot use the exact production hardware for your practice runs, attempt to use hardware that is as similar as possible to it as your budget allows.

Tip: Use recent copies of production databases

Similarly, it is in your interest to use copies of production databases that are as recent as possible in doing your practice upgrades. The amount of data that you have has a great effect on the upgrade runtime, so using recent data will enable you to get the most accurate picture of what will happen when you go live. Also, data integrity problems have been known to cause some upgrade scripts to error. Again, using recent copies will minimize the chance that you see new problems in go live that you did not see in practice runs.

Tip: Analyze space requirements

You will need to add a significant amount of space to your database to complete the applications upgrade. During your early practice runs, record how much additional space you added and utilized to complete each major phase of your go live plan. Then, in subsequent runs, add all of the space that you need as a preupgrade step, allowing for some data growth in your production environment before you go live. You do not want to have any risk of running out of space during your go live run. If a script errors out because of a lack of space you might lose hours in rerunning that script again after additional space is added.
Tip: Take backups during the cutover process

Assuming that you already have processes in place to take backups of your production database in a rapid fashion, it is extremely wise to take backups of your database during your actual go live. Suppose you expect to have a three day downtime window. If you experience some catastrophic database error in day 3, and you do not have intermediate backups, you will have to start over from scratch or you might be forced to fallback to your old system. If on the other hand, you took backups after every major phase of your go live plan, you can revert to your last backup and hopefully only lose hours of time instead of days.

Tip: Create temporary environments to use during the downtime
You can partially reduce the pain incurred as a result of your downtime by creating temporary environments. At the start of your upgrade, you can create a copy of the pre-upgrade environment and bring it up as a read-only environment for your users to access. Some companies have also found that it is good to have another copied environment to serve as an emergency transactions environment. For example, you might need a way to ship product or provide emergency service to a critical customer and you might only be able to do that if you have the ability to record a transaction in your old Oracle system. You can create an environment especially for entering such emergency transactions. Of course, such transaction data would NOT be automatically migrated to your upgraded 11i instance unless you wrote special conversion programs to do that.

D. Module-specific techniques

Tip: Use Order Management bifurcation

Oracle has completely changed the tables that store sales order, shipping, and pricing data in 11i. As such, there are some scripts that are part of the Oracle upgrade process that convert the data from the old format to the new. If you have a large amount of such data in your source system, these scripts will take a long time.

To alleviate that, Oracle has provided an optional approach for its customers that they call bifurcation for upgrading this data. This basically enables you to upgrade only some portion of your Order Management data during the downtime and upgrade the rest of your data at a later date.

See Oracle metalink note 121200.1 for instructions on how to use the bifurcation functionality. It will only be an option for you if your business can tolerate being without some set of historic Order Management data at go live time.

Tip: Clear interface tables prior to downtime where possible

Many of Oracle’s Category 1, 2, and 3 preupgrade steps involve executing final runs of certain programs to ensure that data is in a particular state before you run the core conversion scripts. For each of these, consider whether your business can support doing those steps prior to the official start of your downtime. For example, your business might need to ship product up until the last minute before downtime starts, but perhaps it can tolerate not executing some Payables transaction for a few days longer. If that is a case, consider the possibility of executing those Payables steps hours or days ahead of the start of your downtime so that they do not become part of your critical path.

E. Deploying customizations and custom setups

Tip: Custom Indexes, Triggers, and Constraints

Oracle’s upgrade manual advises you to disable any custom triggers and constraints that you have placed on standard Oracle tables AND to drop custom indexes prior to running the upgrade and then re-enable or recreate these when done.

Enabling and disabling triggers is not a time consuming option, so doing that should not impact your downtime greatly. However, creating indexes and enabling constraints CAN be very time consuming.

For indexes, it is theoretically possible that your custom index could adversely affect upgrade performance or even cause an error if the upgrade itself is creating an identical index. However, we do not recommend dropping all indexes in response to this hypothetical scenario. We feel that custom indexes that are still desired in your 11i system should be left in place in your early practice runs and then drop individual ones later based on experience if they are found to cause problems. If you do not want the custom index in your 11i system, then you can and should of course drop it prior to the upgrade. For constraints we also recommend that you try leaving them enabled first and disable and reenable them only if it proves necessary.

Tip: Use FNDLOAD, WFLOAD, and other Oracle APIs for custom setups

As part of your 11i implementation you will most likely need to create new custom setup data in your upgraded environment. Some of the Oracle Upgrade Manual’s category steps instruct you to define some module specific setups as a post upgrade step. If you are willing and able to spend the effort, almost all such setups can be created with scripts.

In fact, in 11i Oracle has greatly expanded its own list of utilities that it supports for just this purpose including FNDLOAD and WFLOAD utilities that can migrate data from one environment to another. It also supplies PL/SQL APIs for creating setups via PL/SQL call.

Learn about these utilities and use them to create your setup data if you find that your manual setup processes are contributing greatly to your downtime.

Tip: Deploy customizations efficiently

The number of customizations that you have to modify to support your 11i upgrade is likely to be orders of magnitude greater than what you do in a typical maintenance weekend. As such, whatever usual mechanism you use for deploying custom code to your production environment might be unsatisfactory for deploying a large number of changes in a small amount of time.

You can create some simple shell scripts to help do the work. If you study Oracle’s large patches which deploy thousands of objects, you can glean some good tips that will help make your deploy faster. For example, it is wise to deploy Oracle database objects according to a logical object type sequence that will enable objects to compile without error: tables, then package specs, then package bodies, etc. Also, your deployment mechanism should definitely create objects of the same type in parallel instead of serially to minimize total execution time. If your code deploy mechanism allows sequencing and parallelism, it should be sufficient for optimizing your code deploy.
Tip: Prepare custom code tree / generate files out of the critical path

As stated in the patching section, Oracle recommends the mechanism of staging your APPL_TOP so that copying files and generating forms and reports and C programs does not add to your downtime. You should follow the same recommendation for your custom code. There is no reason to waste time compiling custom forms and reports during your downtime. All file system objects should be prepared in advance.
Tip: Consider impacts on external / boundary systems
Many companies operations rely on other custom or purchased applications systems to complement their Oracle implementation. In many cases, such systems feed data to or receive information from the Oracle Applications environment. If this is true for your company, be sure to think about the impacts to these systems from a logical and from a downtime planning perspective.

Questions to ask include:

· Can this system be up while the Oracle Applications are being upgraded?

· If this is an upstream system, how will you handle data that is manipulated in this system while the Oracle system is down? If this is a downstream system, how will we make sure all data changed in Oracle prior to and during the upgrade is reflected in that system?

F. Certifying the upgraded environment

In addition to running Oracle’s conversion scripts and deploying any customizations, most companies choose to have some formal auditing and test processes on the go live environment before declaring the 11i environment ready and open to the general user community. This section gives some tips about how to make this portion of your go live plan run smoothly.

Tip: Establish clear “go” criteria

Despite all efforts, it is possible that something unforeseen might happen during your go live run. During the go live process, you might become aware of some serious bug that is present in your production system. You could end up spending hours arguing whether it is ok to go live with that bug present. Be prepared by establishing some clear and definitive criteria that will help guide you if such a situation arises.

Also, make sure you know exactly where in your plan your final “go” decision needs to be made.

Tip: Define clear and intelligent audit strategy

Many companies choose to run reports to certify that the go live environment’s data is ok before declaring their 11i systems live. You can run reports in your preupgrade environment and then run the same or similar reports in your post upgrade environment and check that they match.

You can utilize a copy of your environment that was taken prior to the upgrade for doing pre-audits.

It will be infeasible to run every single report that your company uses regularly during this audit phase. Choose those reports that are most critical and representative of your data set. Also focus on running reports on data that actually changes during the upgrade process. There are certain tables that change only minimally or not at all as part of the upgrade process, so auditing such data will not make much sense.

Some companies have chosen to write special reports for use in this one time audit. In such cases, you can construct automated reports that dump their results into temporary tables. This can further reduce downtime so that you can compare the pre and post output via scripts instead of relying on people to review a lot of output manually.

Tip: Define clear Acceptance Test strategy

In addition to data audits, some companies prefer to enter some test transactions into the go live upgraded environment before declaring it open for general use. Again, you will not be able to execute each and every transaction that you do or repeat your entire test suite in a reasonable amount of time. So, choose only your most critical transactions for this acceptance test. If you use automated testing tools, consider using them for this phase to save time.

Tip: Audit and test in parallel

If you choose to do audits and transaction tests as part of your go live plans, you can devise ways to do them in parallel. Of course, your transactions could ruin the integrity of your audits. For example, if you are auditing the number of sales orders in your system and you enter a new sales order in your post upgrade environment, you might mess up your audit. A little coordination can eliminate such problems, however. Alternately, if you can take a database copy prior to this testing, you can possibly audit and test in separate environments.

Just as you will practice the technical portions of your upgrade, you should also PRACTICE these audit and test phases of your go live plan so that people know exactly what they need to do and that all optimization opportunities are exposed.

G. Customizing Oracle’s Upgrade and Patch scripts

If you have tried many of the above suggestions and your business is still not satisfied with the amount of downtime you will have, then you can consider the more radical step of customizing the upgrade. Of course, this will not be recommended or officially supported by Oracle, so you should not take the decision lightly. But experience has shown that it is definitely possible to reduce downtime further by customizing the upgrade scripts. You can try to get Oracle to improve the speed of certain scripts by logging TARs but you will find that Oracle cannot or will not always do that.

Reasons that you might be able to tune the conversion scripts in ways that Oracle will not are:

· You can make scripts fast based on your specific data distribution and usage of the applications whereas Oracle has to make its scripts generic for everyone.

· Oracle makes its patches source version independent. In other words, you run the same 11.5.10 maintenance pack whether you are upgrading from 10.7 or from 11.5.9. As such, Oracle’s patches do not optimize for a particular source release. Since you are only upgrading from one particular release, you can do things that Oracle will not.

One way to reduce downtime via customization is to apply conventional performance tuning techniques (optimizer hints, query rewrites, etc) to long-running scripts. This paper will not cover generic performance tuning. But there are methods unique for tuning upgrades that can be considered. These are discussed in the remainder of this section.

Tip: Precreate indexes

Oracle creates many new indexes as part of the upgrade process. It creates them using a mechanism called odf files. Prior to AD.I, Oracle did not use parallelism while creating indexes and time was wasted. After AD.I, some indexes are created using parallelism, but still time is wasted because the new indexes are not balanced well across odf files. It is relatively easy and risk free to create indexes manually instead of relying on Oracle’s techniques and save overall downtime as a result.

To do this, use the following methodology:

· Look for long-running odf files in AD_TASK_TIMING

· Read the worker log files for those odf files and determine which indexes are taking a long time to create.

· Create say 8 .sql files that create those same indexes. Try to put an equal number of indexes in each of the .sql files so that they will take a similar amount of time to run.

· Run those files as a pre-upgrade step. If the indexes are on new 11i columns, you might even have to add those columns as a pre-upgrade step.

· Once the indexes are created as a preupgrade step, the upgrade and patch processes will simply leave those indexes on the database and not recreate them.

Tip: Avoid index re-creation

When studying long running odf files from your trial upgrade runs, you will notice that the same index could be getting dropped and recreated several times across your conversion! For example, you might have INDEX1 in 10.7 on column A. It is possible that AutoUpgrade will change the index to be on columns A, B. Then your maintenance pack might change the index again to be on columns A, B, C! Additional one off patches might change the index a third time. This process wastes overall time by creating the same large index again and again!

If it is a big index AND that index is not used to aid the performance of the upgrade itself, then you can save a lot of time by:

· Creating the index in its final form as a pre-upgrade step

· Customize the intermediate odf file so that it matches the final form that is desired.

Tip: Drop indexes during mass DML

One fault of Oracle’s upgrade processes is that they often create indexes BEFORE doing mass DML on a table. For example, when upgrading from 10.7 / 11.0 to 11i, there are scripts in the maintenance pack that populate new Order Management tables like OE_ORDER_LINES_ALL. Oracle’s patch creates the table, then creates the indexes on the empty table, and then populates the table with data from the source tables. The indexes on the new table have to be altered with the addition of each and every row that is populated. We have found that it saves significant time to drop all but a few indexes on the table while the data is being populated, and then create those indexes only once all the data is present.

Similar changes can be done for customer, shipping, and pricing data.

Tip: Adjust FREELISTS parameters during mass DML

Oracle has many cases where it uses “manual parallelism” where multiple workers are executing the same script at once on different subsets of data in the same table. We have observed that in these cases, it is beneficial to have a higher FREELISTS value for tables and indexes than what Oracle seeds as default values.

Tip: Utilize AD_PARALLEL package

In many of its transactional upgrade scripts, Oracle has utilized its AD_PARALLEL package which enables multiple database sessions to divide the work of a long running script.

When studying the long running jobs from your upgrade, you might find some scripts that are taking long but are not using this AD_PARALLEL package. It is possible that your company uniquely has a lot of rows in some table that most of Oracle’s customers do not, so they did not bother using parallelism for that script. If that is the case, you can consider customizing the script yourself to use the AD_PARALLEL package or to log a TAR to Oracle asking them to provide you a parallelized version of the script in question.

Tip: Combine similar scripts

If you carefully review the contents of Oracle’s AutoUpgrade and Maintenance packs, you will find that there are some separate scripts executed that could easily be combined for performance improvements. Because Oracle’s patches support upgrade from any source release, they some times have to be structured this way. But because you are only upgrading from one release, you can consider combining scripts.

For example, you will notice that across AutoUpgrade and the maintenance packs, there are more than 5 separate scripts that update some column for every row in the MTL_SYSTEM_ITEMS / MTL_SYSTEM_ITEMS_B table. Instead of reading and rewriting each row 5 times, these scripts can be combined into one update script that updates all of the columns in one shot.

Tip: Comment out unnecessary upgrade scripts

There are cases where you will find that there is a script that takes a long time in your environment, but in the end, based on your unique implementation, that script does not actually do anything. For example, a script could consist of some complex cursor that is searching for a certain type of AR invoice, and if it finds one, then it will update the record in some way. That cursor might take 2 hours to execute and not return any rows. Based on reading the script, you might be able to know with 100% certainty that the script will never update any rows on your environment because you do not use that invoice type. If that is the case, you can consider customizing the upgrade script to simply exit so you do not waste valuable hours of downtime.

Conclusions

As Oracle upgrades are large exercises, it is not surprising that there are a large number of potential ways for reducing the downtime that they cause. Some of the tips are very easy to implement and others require significant investment to execute. Companies that set clear goals, get informed, and act early in the project lifecycle will be more able to take definitive actions to reduce the downtime to an acceptable figure. Utilizing the assistance of internal personnel or consulting companies who have executed 11i upgrades before can save you a lot of time and effort.

References

· Oracle Applications Manuals

(available at: http://www.oracle.com/technology/documentation/applications.html)

· Upgrading Oracle Applications Release 11i (11.5.10)

· Oracle Applications Maintenance Procedures

· Oracle Applications Maintenance Utilities

· Oracle Metalink notes

(available at http://metalink.oracle.com)

· 121200.1 “Order Management Release 11i Upgrade Instructions”

· 217370.1 “Reduce Downtime by Using a Test APPL_TOP for a Production Upgrade”
· 225165.1 “Patching Best Practices and Reducing Downtime”

· 230538.1 “TUMS (The Upgrade Migration Script)”

· 233428.1 “Sharing the Application Tier File System in Oracle Applications 11i”

· 236469.1. “Using Distributed AD in Applications Release 11.5”

· 242480.1. “Using a Staged Applications 11i System to Reduce Patching Downtime”
 David Joffe

copyright 2005

Page 5 of 15

