Database

Performance monitoring and tuning Oracle E-Business Suite for Applications DBAs
John Kanagaraj, Cisco Systems Inc.

Introduction
Packed with tons of new features and certified for use with EBS, Oracle Database 10gR2 and 11gR1 have nevertheless had a later adoption within the EBS community compared to other users. This is actually a good thing since we can now learn from the experiences with other 10g/11g based databases. In this detailed technical paper packed with tips, best practices and code, we will see how to use the new and expanded features of both 10gR2 and 11gR1 in performance tuning an Oracle EBS (11i/R12) installation.
1. Learn selected new features of Oracle Database 10gR2 and 11gR1

2. See how these apply in an E-Business Suite installation
3. Learn best practices performance tuning an E-Business Suite installation
4. Walk-through code related to these points

5. Provide pointers to further learning and understanding
Before we begin

Oracle E-Business Suite (EBS) is a complex piece of software with many layers and various technologies. Hence, the scope of monitoring and tuning application performance is a vast area. In this paper (and presentation), while we will concentrate on the Database layer, we will also mention some key aspects related to tuning in the other layers as well.
It's all the same (with a little bit of difference!)

We need to keep in mind that although EBS is a specialized, well designed and configured application that employs well understood and standardized procedures, at the end of the day, it is just another application, albeit complex. Traditional performance monitoring and tuning techniques employed for other applications will also work on EBS provided the standards are understood and followed. As an example, up to date database object statistics that reflects current data sets is essential to SQL performance. Object statistics (table/index "stats") are usually collected using the DBMS_STATS package in an Oracle Database. In an EBS instance, however, you should never invoke DBMS_STATS directly, but use the "Gather Schema Statistics" (or equivalent Table/Index programs). What this program does in effect is to call FND_STATS which is actually a wrapper around DBMS_STATS! In other words, we finally use DBMS_STATS, but in a controlled and standardized manner. More on this particular issue later, but in general, our point is that you can apply other generally well known and understood techniques and tools to the issue, keeping in mind EBS specifics.
Overview of approach
Before starting to work on a performance issue, you will need to ask and answer the following questions:

· What is slow? There are many components and types of interfaces to EBS. You will need to figure out which component is slow so you can start drilling down. For example, you need to know if Concurrent program processing is slow, but Forms applications are behaving as expected. You may then have to trace those specific programs, but can ignore general, overall environment tuning.

· When is it slow? Is the problem occurring now, or did it occur in the past? Is this always slow or has deteriorated during the past few days/weeks/quarters? Does it occur consistently or is it unpredictable? Does it precede or succeed certain other processing? For example, a report may be running slow during monthend/quarterend since it is processing a higher than usual data set. If so, you may need to analyze the parameters used and try and determine the behavior of SQL under these circumstances. Another example is early in the US morning when many geographies are online – some wrapping up the day while others are starting – in this case, you may need to look at peak capacity and add some computing resources.
· What is the extent of the problem? Is the slowness faced by all users? Does it vary by geography? For example, if Forms applications work well for local users but remote users are slow, you may want to look at latency and network bandwidth
· What is the priority? This is an important point. Given limited resources, you will need to apply them to critical business processes that affect Business Close and other SLAs rather than to satisfy an irate user using a Form once in a while for a non-business critical process.

Collecting this information is crucial to chalking out next steps. You will also need to solicit and record real and reasonable SLAs (Service Level Agreements) for key transactions – this will give you a target to aim for. Otherwise, you will not know when you need to stop tuning efforts. (This phenomenon is known as CTD – Compulsive Tuning Disorder. The term was coined by a friend and performance expert Gaja Vaidyanatha)
Architectural Overview

Below is a pictorial overview of Oracle EBS architecture. Both 11i and R12 have a common set of components – albeit with different products. The common thread though is that there will be a Desktop tier with a PC, a "tech stack" including Web and App server, a Report server, and a set of Concurrent manager servers. These are backended by an Oracle Database – which may or may not be clustered using Oracle RAC technologies.

[image: image1.jpg]Desktop Tier

Oracle E-Business Suite Architecture

Application Tier
(“Tech Stack” S

Database Tier

Web Server

Web Browser
+

Java VM
(Jinitiator, Sun JRE)

Forms Server

Concurrent
Manager

Reports
Server

Admin Server

Discoverer
Server

—

Oracle
Database
Server
(9i, 10g, 11g)

Dt

Desktop Tier

The desktop is the first level – where it all starts and ends. The desktop hosts the Browser as well as the Jinitiator (or Sun JRE) which runs the applet to support Oracle Forms. The availability of adequate CPU, and even more important, adequate memory is of great importance to performance. For good performance, it is essential that you keep pop-up blockers, autostart items, unnecessary background services to a minimum. Check the following paper for more details: http://www.oracle.com/technology/products/applications/performance/PC-Client-Performance.pdf
Tech Stack (Application Tier)
Monitoring and tuning the EBS "Tech Stack" is a little bit of a challenge not just because of the number of various technologies involved, but because these technologies do not produce the same level of performance and other statistics that the database produces. As well, the skills required to debug and tune the Tech Stack does not necessarily rest in the DBA area.
There are essentially three areas to consider while tuning the tech stack:

· For good performance in the Tech stack, it is essential that you keep up with the latest certified versions of the various components such as the OC4J, Forms and JDK/JREs, or at the least apply relevant patches in these layers. This will ensure that your tech stack is up to date w.r.t resolutions for performance and other types of bugs
· The various layers will need to have the right amount of resources, namely CPU and memory. You can monitor the CPU and system wide memory usage for the various frontend App servers using OEM or your favorite tool. In the absence of GUI or other tools, even sar or vmstat will do for UNIX/Linux based servers. Keep in mind that sar can look back in time – sar files are usually stored for up to a month when configured.
· Configuration settings for the various components. This is a vast area to cover, but when dealing with JVMs, there are certain common items that will need to be checked. We will discuss this in more detail in the next section.
Having said that, let us drill down to specific layers.

Web Server

At the Web server layer (as differentiated from the App server), you can employ options such as Web Cache in order to provide some performance boost. As well, you should make sure that static content such as graphic files are downloaded in parallel and that they are properly cached, etc. You can use tools such as Charles to debug these issues.
When you have clients that are remote compared to the Web server (as most EBS instance usually serves a global audience), you might want to consider local accelerators such as Akamai. Also, consider the network latencies that come into effect when working with remote clients. "Chatty" applications suffer the most from latency – this is applicable to TCP/IP communications for all layers, but this especially hits at the Web server layer because the clients' distance is measured from this point.
Forms

There are a number of settings that can affect performance. By setting these recommended values, you can avoid certain overheads. My recommendation is that you set them only if you encounter issues or capacity boundaries. In any case, Oracle recommends the following for forms

· Run forms in socket mode for internal users for R12 – this is described in Metalink Note 384241.1. The default servlet method uses HTTP protocol for communication between the client (on the PC) and the Web server – this increases traffic as it uses cookies and http headers which increases network traffic.
· Enable Forms Dead Client Detection by specifying FORMS_TIMEOUT = 10 but do not set FORMS_CATCHTERM (all of this using Autoconfig)
· Disable Cancel Query when facing CPU capacity issues as it consumes CPU on both the DB as well as App tier. See Metalink Note 138159.1 for details.
Keep in mind that unlike a HTML based OAF page (which connects to the Database via an intermediate Apps layer with a connection pool , and the Apps layer works over a LAN), a Forms application connects to the Database directly. Hence all back-and-forth traffic between the Form and the Database is over longer distances on the WAN instead of a LAN. Hence network latencies play a larger role on a "chatty" forms applications as compared to a Web application that is chatty at the Apps to DB layer. A quick win is to limit the number of LOV items that are displayed – the better filtering there is at the SQL layer, the better the response will be as the whole LOV is not being sent across the network with latencies.
Note that SQL issues from Forms can be flushed out via tracing. To enable SQL trace from Forms, have a look at Metalink Notes 135389.1 (Using profile option 'Initialization SQL Statement - Custom') and 296559.1 (FAQ: Common Tracing Techniques within the Oracle Applications 11i/R12).

JVMs

Again, there are a number of settings at the various JVM layers that can affect performance. This is discussed in detail in the Metalink Note: 362851.1 - Guidelines to setup the JVM in Apps E-Business Suite 11i and R12. Assuming that adequate computing resources (CPU, Memory) are available (Point 2 above), and the problem is not related to SQL performance, the number of JVMs and their settings can make the most difference in performance. The following settings are important:
· JVM heap configuration – some starting values have been specified in the Metalink notes, but there are some additional parameters that can help with performance as well. Basically, these settings will affect the following:

· What type and level of debug/log/timing/verbosity messages are written to the log – generally higher logging levels may be turned on temporarily to troubleshoot issues. Once that is done, the levels will need to be reduced as this has space and processing overheads
· How much memory is allocated to what type of heap. In general, you will need to balance larger heap memory allocation vs. time spent in garbage collection. Larger heaps generally will result in larger pauses during Full garbage collections, but there are techniques to aid in GC so you may want to lean on the side if increasing the heap size. Also, if the Heap usage increases steadily over time, this is possibly due to memory leaks - you might start seeing continuous full GCs and various users may end up with OOM (Out of Memory) errors.
· How garbage collections work – controls how and when full and partial GCs run, use of parallel GC, number of GC threads, etc.
· Number of JVMs – Depending on the number of users, the heap memory usage patterns, CPU speed and memory availability, etc., you might have to increase the number of JVMs. Note that you have the ability to run multiple JVMs per Host, but keep in mind that you cannot randomly increase the number of JVMs as there is a CPU and Memory cost
A lot of information about JVM performance and the effect of the GCs can be understood from logs and JVM thread dumps. Reading them is not a trivial task, but this can be learnt. Oracle support will definitely ask for thread dumps and logs to determine not just performance issues but other issues such as Out of memory, thread locking, etc. Thread locking can be a major performance issue in JVMs and thread dumps taken a minute apart can clearly show such locking and other JVM related issues. Oracle Enterprise Manager with the Application Server Control is getting better and better with various troubleshooting tools and is recommended.
You can also enable SQL trace for OAF pages in case SQL issues are suspected. This is described in Metalink Note 296559.1 - FAQ: Common Tracing Techniques within the Oracle Applications 11i/R12.
Reports
The majority of Reports tuning is SQL based since the Reports usually turn out to be formatters for SQL results. However, there are a few cases when the problem is with the Report side. In this case, you can enable Reports tracing. This is explained in Metalink Notes: 140894.1 (How to Run a Runtime Reports Trace and Logging) and 237301.1 (Tracing in Reports 9.0.x / 10.1.2.x).
Concurrent Managers

The Concurrent manager framework essentially provides a means to submit, schedule, control and execute batch jobs and transaction processers. Tuning the framework requires a good understanding of the underlying tables (chief among them are the FND_CONCURRENT_REQUESTS and FND_CONCURRENT_PROCESSES tables) as well as the concept of queues and queue parameters. The number, type, width (number of processes) and queue parameter settings determine the "pipe" through which the batch jobs proceed and you will need to balance the load that these jobs place on the Database environment against the resources required for other processing such as OAF and forms users. Setting too slim a pipe will throttle batch job processing while having too wide a pipe may negatively affect online response. The concurrent manager scheduler itself needs tuning as well – the following lists some of these:
· Maintenance of these key tables via regular purging via the "Purge Concurrent Requests" job is the first essential task you need to do. Remember that this purges your reports file system as well. Good performance, especially if you query reports after they are produced, depends on the number of retained reports. Long retention in a very busy installation translates to very large directories for both the log and out directories in the APPLCSF area.
· By default, the Sleep seconds is 60 seconds, which means that scheduled/submitted jobs will need to wait at most 1 minute. This may hold back short running, critical transactions so look at the difference between REQUESTED_START_DATE and ACTUAL_COMPLETION_DATE column values of the FND_CONCURRENT_REQUESTS table to decide how much these jobs are waiting. A sleep time of 5 to 10 seconds may be required. However, keep in mind that you should NOT reduce all the queues to this value as it will then force the managers to wake up and check the FND_CONCURRENT_REQUESTS table more often than they need to. Note that small values also have a detrimental effect on this table when using Parallel Concurrent Processing (PCP) across multiple nodes in a RAC environment. See the RAC Considerations section below for a deeper analysis.
· Increase the cache size to twice the number of processes

· To avoid queue backup, don't mix short and long jobs as well as critical and non-critical ones. Remember to provide the initial exclusions/inclusions at the Queue level, and create a process to review assignments for all subsequent additions. I would suggest creating at least the following set of queues and assign as below

· "Short Critical" – Assign critical jobs that consistently take less than say 1 to 5 minutes. Queue width should be around say 0.75 x number of such simultaneous jobs at peak. Sleep cycles should be 5 seconds

· "Long Critical" – Assign all other critical jobs that take more than 5 minutes. Queue width should depend on the number of simultaneous jobs given the SLAs such that jobs don't wait for too long. Sleep cycles may be set to 30 seconds. Note that if there are a large number of jobs running at period ends, the load will go high – increasing the queue width at that time is tempting, but that will not help if the maximum processing capacity of the environment has been reached
· "Short non-critical" – Assign other non-critical jobs that consistently take about 5 minutes or less. Queue width should be at a value that does not overly load the environment and the DBAs should be prepared to reduce this width during high loads. Sleep cycle may be 10 seconds

· "Long non-critical" – Assign other non-critical jobs that take more than 5 minutes. Same restrictions as above

· "Administrative" – Assign administrative jobs such as purge jobs (CM, WF) as well as Gather Stats jobs. You might also choose to use Work Shifts so you can control the times.
Note that you will also need to control the number of queues – keep it simple.

· You may want to consider using the Bequeath connection method if your Concurrent managers run on the Database tier as this has been shown to reduce network overheads on traffic intensive concurrent requests. Note that this requires setting up and using the right TNS entries at all layers.
· Review SQL trace settings on all Concurrent jobs – they may have been switched on once and forgotten. This will prevent unnecessary trace file creation in the udump directory
It is always a good idea to track individual Concurrent job performance. You can do this by storing and analyzing concurrent job history – create a copy of selected columns related to Program ID, Requested Start time, Actual Start and End times, as well as parameters from the FND_CONCURRENT_REQUESTS table. Large variations in execution time should be investigated – this may mean underlying SQL issues as well as the use of varying parameters. You may need to create different versions of the same program for such outliers so that you can assign the jobs to the right queues as noted above. For an excellent article that discusses the use of variance in determining the programs to track have a look at "An Industrial Engineer’s Approach to Managing Oracle Databases" by Robyn Anderson Sands in the Q2 2009 issue of the IOUG SELECT Journal. For a good summary of best practices for Concurrent managers, see Metalink Note: 1057802.1 Best Practices for Performance for Concurrent Managers in E-Business Suite.
Database Tier

There are certain key things that you need to follow while setting up and running a performant Database for an Oracle EBS. This include the following:

· Strictly follow the recommendations set for the mandatory Init.ora parameters. Deviating from these settings will potentially make your installation unsupported. You have some leeway in setting the DB Cache sizes including the SGA_TARGET, DB_CACHE_SIZE, SHARED_POOL_SIZE and PGA_AGGREGATE_TARGET. While setting these values, take into account the available memory, balancing over-allocation (that can cause memory starvation and swapping) against under-allocation (causes general overall slowness, extra I/O because of lack of Block buffer cache and PGA cache, issues in Shared pool size, high reloads and parse times, and possibly ORA-4031 errors). You can use the various cache advisories to determine settings.
· Make sure that the Tables/Indexes are analyzed using approved methods. Namely, you should use the Gather Schema Statistics (or the related Table/Index versions) programs. Also, you need to switch off the inbuilt Stats collection job (scheduler in 10g, auto task in 11g). We will talk about this topic a little later.
The Oracle database is capable of producing a very large number of performance and other statistics. The storage and reporting of these statistics has become very sophisticated over time. Starting in Oracle Database 10g, the Automatic Workload Repository (AWR) provides this function. AWR consists of various components including Active Session History (ASH), AWR snapshots, various advisors including the SQL Tuning Advisor and SQL Access Advisors. For a detailed, in-depth analysis of these tools, please refer to my IOUG papers titled "Your Tuning Arsenal: AWR, ADDM, ASH, Metrics And Advisors" and "Oracle Database 10gR2: An Enlightened Revisit (Before We Give Up And Move To 11g!)" as well as my book titled "Oracle Database 10g: Insider Solutions" (SAMS Publishing). We will look at some essential details below, and setup some knowledge about AWR before we see how it can be used in Oracle EBS.
Before you use AWR or even look at the AWR views, you will need to have the right licenses. Be warned!

AWR – The Performance Data Warehouse

The Automatic Workload Repository or AWR for short is the performance data warehouse of Oracle Database 10g. All versions of the Oracle Database produce a vast amount of performance data. In Oracle Database 10g however, this is taken to a whole new level. The Automatic Workload Repository (AWR) is a new infrastructure component that is at the heart of the collection, storage and processing of this data. This data forms the basis for most of the problem detection and self-tuning mechanisms that Oracle Database 10g provides. In fact, the performance-alert mechanisms rely on this data, as do many of the performance advisors. The Automatic Database Diagnostic Monitor (ADDM) uses this data as well, performing scheduled analysis of the data collected by AWR. AWR consists of two components: in-memory performance statistics, accessible through V$ views, and snapshots of these V$ views “persisted” in the database that record the historical values. AWR consists of the following collections:

· Active Session History (ASH)

· High-load SQL statements

· Time model statistics at the database level as well as at the session level for CPU usage and wait classifications

· Object statistics that record usage as well as access counts for segments such as tables, indexes, and other database objects

· Snapshots of traditional V$SESSTAT, V$SYSSTAT, V$SYSTEM_EVENT, and V$SESSION_EVENT data

Out of the box, AWR data is automatically collected every hour on the hour. The Oracle kernel allocates a small but distinct portion of the System Global Area (SGA) to buffers that are dedicated to holding session history and other AWR-related information. These in-memory buffers are updated by the MMNL and MMON background processes via sampling of session information and counters. The Memory Monitor Light (MMNL) process, new to Oracle Database 10g, performs tasks such as session history capture and metrics computation and stores this information in these buffers. It also persists the statistics in these buffers to disk as needed in the form of AWR tables. The Memory Monitor (MMON) process performs various background tasks, such as issuing alerts whenever a given metric violates its threshold value and taking snapshots by spawning additional process (MMON slaves), among others. Together, they are responsible for the statistics, alerts, and other information maintained by AWR. These statistics are made permanent in the AWR, which consists of a number of tables. By default, these background jobs automatically generate snapshots of the performance data once every hour and flush the statistics to the workload repository. The Automatic Database Diagnostic Monitor (ADDM) then kicks in to analyze the data from the immediately prior and current snapshots, and to highlight any performance issues or problems. You can perform all this manually as well, but this will occur automatically out of the box. Ultimately, because SQL executing in a user or background session produces database work and hence load, AWR works to compare the difference between snapshots to determine which SQL statements should be captured based on their effect on the system load. This reduces the number of SQL statements that need to be captured over time, while still capturing the essential ones. Thus, AWR serves as a performance warehouse for the Oracle Database 10g, generating, maintaining, and reporting these performance statistics. AWR purges its own data in a scheduled manner, thus self managing itself. You can generate AWR reports for specific periods or view them from OEM.
AWR and Oracle EBS

There is nothing special or different in AWR as far as EBS is concerned. You will need to apply the same analysis of AWR and ASH data as you would in a normal database. However, note that the PROGRAM and MODULE details that AWR and ASH will record will now enable you to quickly associate SQL usage and statistics to specific modules.

As an example we will walk through some sections in the AWR report. Below is the usual place I start at – the Top 5 Timed reports which shows all the summarized time spent on CPU and various Oracle "wait events".

Top 5 Timed Events Avg %Total

~~~~~~~~~~~~~~~~~~                                 wait   Call

Event                          Waits    Time (s)   (ms)   Time Wait Class

----------------------- ------------ ----------- ------ ------ ----------

db file sequential read   10,818,054      74,085      7   56.7   User I/O

CPU time                                  20,605          15.8

gc buffer busy             2,086,824      12,810      6    9.8   Cluster

db file scattered read     3,226,504      12,362      4    9.5   User I/O

read by other session        879,441       4,312      5    3.3   User I/O

From a first glance, it seems that the Database is I/O bound since the "db file sequential read" and "db file scattered read" wait events are in the Top 5. However, the issue is elsewhere! This was a 1 hour snapshot on a 16 CPU box. In other words, we theoretically had 57,600 CPU seconds available (16 x 60 min x 60 sec), and although the %Total Call time indicates a 15.8% impact, actually, this Database burned up almost half the available CPU seconds. A quick check revealed that the box was shared with another database as well, and the AWR report showed that it was also consuming a lot of CPU cycles. 

We then looked at the OS CPU usage stats using 'sar' for the specific period and this clearly showed both high CPU and Wait I/O usage and very little idle time. Clearly, there was a CPU constraint at this time.
$ sar -u -f /var/adm/sa/sa11 -s 19:30 -e 21:30

19:30:00    %usr    %sys    %wio   %idle

19:40:00      67      19      11       3

19:50:00      77      16       6       1

20:00:00      72      16      11       1

20:10:00      55      19      24       3

20:20:00      51      17      28       4

20:30:00      52      17      27       4

20:40:00      53      18      25       4

20:50:00      52      18      26       4

21:00:00      44      19      31       5

21:10:00      49      20      26       5

21:20:00      56      20      20       4

21:30:00      75      15       8       1

Average       59      18      20       3
The Wait I/O %age is also high, pointing to a potential I/O bottleneck. However, we know that it is better to reduce requests for I/O and CPU before we add any capacity (as that is not cheap and is a lengthy process), and the best way to do this is to tune SQL. To determine the Top SQL, we can then drill down to the "SQL" sections of the AWR report.
SQL ordered by CPU Time             DB/Inst: TSTDB/TSTDB1  Snaps: 1675-1676

-> Resources reported for PL/SQL code includes the resources used by all SQL

   statements called by the code.

-> % Total DB Time is the Elapsed Time of the SQL statement divided

   into the Total Database Time multiplied by 100

    CPU      Elapsed                  CPU per  % Total

  Time (s)   Time (s)  Executions     Exec (s) DB Time    SQL Id

---------- ---------- ------------ ----------- ------- -------------

    11,733     15,203        1,525        7.69    52.2 4bdz6z8r4b2dj

Module: icx.por.req.server.RequisitionAM
SELECT PSSV.COUNTRY FROM PO_VENDORS PSV, PO_VENDOR_CONTACTS PSCV, PO_VENDOR_SITE

S PSSV WHERE NVL (PSV.ENABLED_FLAG, 'Y') = 'Y' AND PSV.VENDOR_ID = PSSV.VENDOR_I

D(+) AND ( PSV.VENDOR_TYPE_LOOKUP_CODE IS NULL OR PSV.VENDOR_TYPE_LOOKUP_CODE <>

 'EMPLOYEE' ) AND (SYSDATE BETWEEN NVL (PSV.START_DATE_ACTIVE, SYSDATE - 1) AND

Few callouts: You can see in this section that this SQL consumed 11,733 CPU seconds for 1,525 executions and was about 52% of the CPU used (which makes sense given the previous CPU usage). You can also see the module this originated from, namely, iProcurement/Requisitions in this case. In other cases, you may see Concurrent manager or Forms short names.
In any case, now you will have to determine if the SQL is custom or from packaged code, and if custom code, pursue normal SQL tuning. In addition, you have the following options:

· If you have the right licenses, you can also use the SQL Tuning Advisor to determine if there are any possible fixes via SQL Profiles. 
· If you determine that there is a better SQL execution plan, you may want to look at using SQL Outlines to "fix" the execution plan for a given SQL. (If you are on 9i, this is probably the only option available on this list)

· If you are on Oracle 11g, you can use SQL Plan Baselines to provide the same "fix" from the outside. SQL Plan Baselines has the ability to evolve execution plans so this is a much better option as compared to Outlines. 

ASH and EBS

Active Session History (ASH) is a new feature in Oracle Database 10g, and greatly expanded in Oracle Database 11g, that is very useful in determining the execution history at the session level. This is no different in EBS, expect that the module records EBS specific information. Unfortunately, the Concurrent Request ID is not recorded. For a detailed drill down into how to use ASH for troubleshooting, have a look at the paper and the book listed above. Note that every 10th sample is persisted in the database and made available via the DBA_HIST_ACTIVE_SESS_HISTORY view. In other words, you may be able to retroactively construct a SQL trace (10046 Level 8 trace) after the event has occurred.
Bind Variable Capture

Starting in Oracle database 10g, bind variable values are captured, stored and viewed via the V$SQL_BIND_CAPTURE and DBA_HIST_SQLBIND views. The values are captured at first parse and every 15 min thereafter (controlled by hidden parameters _cursor_bind_capture_interval and _cursor_bind_capture_area_size). The advantage is that you may be able to capture sample bind values for specific SQLs without resorting to a 10046 Level 4 trace. With ASH and bind capture, you may be able to get something out of the cache for past events.

Statistics gathering

One of the key requirements for good SQL performance is the availability of object statistics (table/index/column/histogram statistics) that closely reflect the current data patterns. In EBS, object statistics collection should be done using the "Gather Schema Statistics" concurrent program (and the related Table/Index stats programs for granular collections when required). This program internally calls the relevant FND_STATS inbuilt procedure. FND_STATS in turn is a wrapper around DBMS_STATS, and the readable FND_STATS code builds up the various parameters for the DBMS_STATS and executes it. In addition, FND_STATS avoids collecting stats for certain tables as specified in the FND_EXCLUDE_TABLE_STATS table.  See below for how FND_STATS collects Histograms.

Histograms

Histograms are objects that describe the data distribution (skew) in specific table columns, and is collected using the METHOD_OPT parameter in DBMS_STATS. As described above, FND_STATS constructs this parameter dynamically from the list of columns for specific tables using the contents of the seeded FND_HISTOGRAM_COLS table. This is in sharp contrast to the default METHOD_OPT parameter for DBMS_STATS in 10g, namely "FOR ALL COLUMNS SIZE AUTO". As a result of this default, and the invocation of auto stats gathering, you will find a large number of histograms in non-EBS environments. This is a problem because it causes a number of "bind peeking" related issues. In short, depending on the value of the bind variables during an initial parse, performance could vary wildly between one invocation and another when the columns with bind variables have histograms. In other words, EBS does a "good thing" by controlling histogram creation. However you should be aware of this ill-understood but significant point, especially if you use the regular DBMS_STATS default collection for other custom schemas in an EBS environment. Our suggestion is to register all custom schemas in EBS and use the EBS Gather Schema Stats program to collect the stats for these custom schemas as well.
FYI, Oracle Database 11g partially fixes the issue using a combination of Adaptive Cursor Sharing (ACS) and SQL Plan baselines. The use of histograms is not well documented in EBS documentation. For an in-depth discussion on histograms, please refer to the Metalink Note: 358323.1 - Case Study: Judicious Use of Histograms for Oracle Applications Tuning that I had authored as part of a CKE (Customer Knowledge Exchange) initiative. I had also presented this at OAUG at ConnectionPoint 2005.
Other 10g features
There are a number of other 10g related features that you should be able to use (provided you have the license to use them!). Oracle Enterprise Manager (either as Grid Control or as the DB Console) is a great tool to monitor and perform a "guided" tuning exercise through the use of Active Session History graphs, ADDM, This includes the SQL Tuning Advisor for tuning SQL, SQL Access Advisor, Memory Advisor, etc. as well as other fixes via Table and Index partitioning. Note that you will have to obtain Oracle Support signoff for implementing some of these as it may clash with EBS standards.
Oracle Database 11g improvements

Oracle Database 11g has introduced a number of performance related features and enhancements. Oracle has built up and extended AWR and ASH that was introduced in Oracle Database 10g. You now have RAC Database level ADDM in addition to Instance ADDM. Oracle has partially fixed the instability in SQL performance due to bind peeking using Adaptive Cursor Sharing. SQL Plan Baselines now enable you to extend the concept of "fixing" SQL execution plan from the outside using Outlines – Plan baselines can now capture all SQL execution paths and thus "evolve" different plans, providing  SQL execution plan stability. You can now create "invisible indexes" that are seen by selected queries and sessions, and generate multi-column and expression statistics. DBMS_STATS has a much better algorithm for generating accurate stats using auto sampling. The list is long, but these are my top favorites. Oracle EBS takes advantage of many of these features automatically. 
RAC Considerations

Oracle RAC can be used in EBS to provide both horizontal scalability as well as high availability at the Database layer. Oracle RAC is not for every installation – make sure you carefully consider other options before switching to a multimode RAC configuration from a current single node configuration. There are considerable complexity and overheads in installing, administering and maintaining RAC, and as well RAC specific overheads in processing that magnifies inefficient SQL and incorrect design. However, Oracle RAC may be the only option when you use commodity hardware (a cute word for low cost Linux based servers) as you may quickly overwhelm a single database node in even a medium sized installations. 
See below for a typical configuration consisting of 3 frontend nodes running the Web, Forms as well as Concurrent managers backended by a 2 Node RAC. The Web/Forms tiers load balance to both nodes through either Client level node balancing or Listener level load balancing. However, the Concurrent managers need to use Parallel Concurrent Processing (PCP) to direct programs to specific nodes. Although you can choose to load balance these connections to both nodes, we recommend not to do so since the RAC overheads can be quite high for long running programs that typically access a large number of blocks that in turn need to be shipped across the interconnect. Directing Concurrent managers to specific nodes will avoid this overhead. However, keep in mind that depending on the number and type of jobs being run on that node, the load on one node might increase so you will need to balance directing load to a specific node against the RAC overheads. 
The advantage with load balancing the frontends is that you will now be able to take advantage of capacity on the node that is available. Frontend traffic consists of short transactions that typically touch few blocks, and are thus ideal for load balancing on multiple nodes. Although there are RAC overheads, this is a small component of time compared to think times.
[image: image2.png]Online Users: Forms, Self Service

/LN

FEL FE2 e

2 Node DB servers Ifterconnget § Non EBS Queries
PBNodel [=¥] DBNode2 i 2 <:| Discoverer (ad-
9 hoc)
(%}
/ Other I/Fs

Connection
fails over to
Node 1

connection to
Node 2





Typical EBS environments contain custom "bolt on" applications as well as upstream and downstream interfaces that access and update data in the EBS database. Depending on their load and access patterns, they can cause significant overhead on the EBS database. To direct and control how they come in and access the data, it would be a good idea to provide connection via the use of Services that direct this traffic to specific nodes. We would suggest that you designate one node as a primary or P1 node, run critical concurrent managers on this node, and designate the other as a secondary, failover P2 node that takes on the other non EBS applications and interfaces. This way, you will be able to manage the load on the primary and isolate non-essential traffic to another node. You might also want to run the "Administrative" type of queues on the P2 node using PCP.

When running a RAC environment, you will definitely see some RAC overheads. You can track this via AWR. We mentioned earlier that the FND_CONCURRENT_REQUESTS table can become a hot spot in an ill-configured PCP configuration. See below a RAC specific section of the AWR report that shows that this table (and one of its associated indexes) came up as one of the top segments for Consistent Read blocks received a node. Further investigation based on this data showed that PCP was in use in this environment and many of the queues on that environment were misconfigured with a sleep cycle of 1 second leading to a lot of traffic between the nodes as the table was scanned every second.
Segments by CR Blocks Received    DB/Inst: TSTDB/TSTDB2  Snaps: 26401-26402

-> Total CR Blocks Received:         127,334

-> Captured Segments account for        56.8% of Total

                                                                   CR

           Tablespace                      Subobject  Obj.       Blocks

Owner         Name    Object Name            Name     Type      Received  %Total

---------- ---------- -------------------- ---------- ----- ------------ -------

APPLSYS    APPLSYSD1  FND_CONCURRENT_REQUE            TABLE       21,345   16.76

APPLSYS    APPLSYSX1  FND_CONCURRENT_REQUE            INDEX        9,357    7.35

XXAPP_O    XXAPPD1    SYS_IOT_TOP_4005193             INDEX        7,771    6.10

XXAPP_O    XXAPPD1    XXAPP_RPR_REPAIR_ORD            TABLE        7,770    6.10

INV        INVD1      MTL_MATERIAL_TRANSAC            TABLE        6,716    5.27

          -------------------------------------------------------------

For a detailed analysis of performance issues related to RAC, refer to the IOUG RAC Performance Bootcamp sessions at COLLABORATE 2010. The IOUG also has a RAC SIG that is very active and has a lot of material – you can register for free at http://www.oracleracsig.org . 

Application Tuning

The Oracle EBS suite undergoes a lot of testing including performance tests, so out of the box, you have a pretty well tuned application. However, it is always a good idea to keep up to date on performance patches – you can use the Metalink Note: 244040.1 Oracle E-Business Suite Recommended Performance Patches for this purpose.
Apart from this, the best thing you can do is to ensure that you have a rigorous Purge policy by specific applications modules. Chief among them is the WorkFlow purge. Although you might set up the WF purge initially, it is imperative to review this on an ongoing basis, as new Item type and Workflows are configured to keep up with business requirements. (I am continually surprised by the amount of WF related issues that arise because this is missed). Check out FAQ on Purging Oracle Workflow Data [ID 277124.1]. You should also aggressively and continually pursue purging of data for specific modules. The R12 Purge Portal is a great place to start if you are on this EBS version.

Although archiving is not inbuilt into Oracle EBS, there are a number of commercial products such as IBM Optim, HP RIM, etc. Archiving will help retain the historical data in a separate instance (or at least away from current data!) so you can assuage business concerns with loosing data during purges.
Conclusion

So there you have it! In this paper, we looked at a number of considerations and procedures for optimizing database and application performance in an EBS environment. We drilled down into specific tiers, pointed out issues at a high level and drilled down into specific issues that have a large impact on performance. Obviously, there is a lot to cover, so along the way, we have also pointed you to other resources to cover the specifics that we were not able to present in this paper. 
Managing optimal performance is an ongoing battle. Hopefully, this paper will give you an additional tool in that battle.

Reference

· Oracle Database EBS (11i/R12) , 10gR2 and 11gR2 and RAC documentation sets
· Kanagaraj, John et al: Oracle Database 10g: Insider Solutions book, SAMS Publishing

· IOUG SELECT Journal articles

· Oracle Metalink

About the Author

John Kanagaraj is an IT Architect at Cisco Systems Inc., and resides in the Bay Area in sunny California. He has been working with various flavors of UNIX since ’84 and with Oracle since ’88, mostly as a Developer/DBA/Apps DBA and System Administrator. Prior to joining DBSoft, he led small teams of DBAs and UNIX/NT SysAdmins at Shell Petroleum companies in Brunei and Oman. He started his Troubleshooting career as a member (and later became head) of the Database SWAT/Benchmarking team at Wipro Infotech, India. His specialization is UNIX/Oracle Performance management, Backup/recovery and System Availability and he has put out many fires in these areas along the way since ’84! 

John is an Oracle ACE, and has co-authored the "Oracle Database 10g: Insider Solutions" book published by SAMS. He is also the Executive Editor of IOUG’s SELECT Journal and has written many articles for IOUG's SELECT and OAUG's Insight Quaterly journals and even the SQL Server Magazine! John has presented interesting papers at IOUG, OAUG and various Norcal local User groups. He always seeks to inspire budding writers and DBAs and can be reached via email at ‘ora_apps_dba_y@yahoo.com’, off his blog (non-Oracle) at http://jkanagaraj.wordpress.com or at LinkedIn. 

COLLABORATE 10 – OAUG Forum
3





Session # 3604


